THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMATH5220 Complex Analysis and Its Applications 2014-2015

Assignment 3

- Due date: 18 Mar, 2015
- Remember to write down your name and student number

1. If C is the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z}}{z-(\pi i / 2)} d z$
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$
2. Let $n \in \mathbb{Z}$ and C be the positively oriented unit circle. Compute

$$
\int_{C} \frac{e^{z}}{z^{n}}
$$

(Hints: There are two cases.)
3. Let f be an entire function.
(a) If $f^{(n)}(z) \equiv 0$ for some natural number n, show that $f(z)$ is a polynomial.
(b) Prove that if $|f(z)|<|z|^{n}$ for all $|z|>R$, where $R>0$ and n is a natural number, then $f(z)$ must be a polynomial. (Hint: Using Cauchy integral formula to estimate $f^{(n+1)}(z)$.)
4. By integrating the function

$$
\frac{1}{z}\left(z+\frac{1}{z}\right)^{2 n}
$$

around the unit circle, parametrized by the curve $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$, show that for any natural number n,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2 n} t d t=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

5. Expand e^{z} into a Taylor series about the point $z=1$.
6. With the aid of series, prove that the function f defined by

$$
f(z)=\left\{\begin{array}{ccc}
\frac{e^{z}-1}{z} & \text { if } & z \neq 0 \\
1 & \text { if } & z=0
\end{array}\right.
$$

is an entrie function.

